3.1894 \(\int \frac{(1-2 x)^{3/2} (2+3 x)^2}{(3+5 x)^2} \, dx\)

Optimal. Leaf size=89 \[ -\frac{(1-2 x)^{5/2}}{275 (5 x+3)}-\frac{9}{125} (1-2 x)^{5/2}+\frac{42 (1-2 x)^{3/2}}{1375}+\frac{126}{625} \sqrt{1-2 x}-\frac{126}{625} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(126*Sqrt[1 - 2*x])/625 + (42*(1 - 2*x)^(3/2))/1375 - (9*(1 - 2*x)^(5/2))/125 -
(1 - 2*x)^(5/2)/(275*(3 + 5*x)) - (126*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*
x]])/625

_______________________________________________________________________________________

Rubi [A]  time = 0.10814, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208 \[ -\frac{(1-2 x)^{5/2}}{275 (5 x+3)}-\frac{9}{125} (1-2 x)^{5/2}+\frac{42 (1-2 x)^{3/2}}{1375}+\frac{126}{625} \sqrt{1-2 x}-\frac{126}{625} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]  Int[((1 - 2*x)^(3/2)*(2 + 3*x)^2)/(3 + 5*x)^2,x]

[Out]

(126*Sqrt[1 - 2*x])/625 + (42*(1 - 2*x)^(3/2))/1375 - (9*(1 - 2*x)^(5/2))/125 -
(1 - 2*x)^(5/2)/(275*(3 + 5*x)) - (126*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*
x]])/625

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 11.0204, size = 73, normalized size = 0.82 \[ - \frac{9 \left (- 2 x + 1\right )^{\frac{5}{2}}}{125} - \frac{\left (- 2 x + 1\right )^{\frac{5}{2}}}{275 \left (5 x + 3\right )} + \frac{42 \left (- 2 x + 1\right )^{\frac{3}{2}}}{1375} + \frac{126 \sqrt{- 2 x + 1}}{625} - \frac{126 \sqrt{55} \operatorname{atanh}{\left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} \right )}}{3125} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((1-2*x)**(3/2)*(2+3*x)**2/(3+5*x)**2,x)

[Out]

-9*(-2*x + 1)**(5/2)/125 - (-2*x + 1)**(5/2)/(275*(5*x + 3)) + 42*(-2*x + 1)**(3
/2)/1375 + 126*sqrt(-2*x + 1)/625 - 126*sqrt(55)*atanh(sqrt(55)*sqrt(-2*x + 1)/1
1)/3125

_______________________________________________________________________________________

Mathematica [A]  time = 0.104378, size = 63, normalized size = 0.71 \[ \frac{\frac{5 \sqrt{1-2 x} \left (-900 x^3+160 x^2+935 x+298\right )}{5 x+3}-126 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{3125} \]

Antiderivative was successfully verified.

[In]  Integrate[((1 - 2*x)^(3/2)*(2 + 3*x)^2)/(3 + 5*x)^2,x]

[Out]

((5*Sqrt[1 - 2*x]*(298 + 935*x + 160*x^2 - 900*x^3))/(3 + 5*x) - 126*Sqrt[55]*Ar
cTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/3125

_______________________________________________________________________________________

Maple [A]  time = 0.016, size = 63, normalized size = 0.7 \[ -{\frac{9}{125} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}+{\frac{4}{125} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}+{\frac{128}{625}\sqrt{1-2\,x}}+{\frac{22}{3125}\sqrt{1-2\,x} \left ( -{\frac{6}{5}}-2\,x \right ) ^{-1}}-{\frac{126\,\sqrt{55}}{3125}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((1-2*x)^(3/2)*(2+3*x)^2/(3+5*x)^2,x)

[Out]

-9/125*(1-2*x)^(5/2)+4/125*(1-2*x)^(3/2)+128/625*(1-2*x)^(1/2)+22/3125*(1-2*x)^(
1/2)/(-6/5-2*x)-126/3125*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)

_______________________________________________________________________________________

Maxima [A]  time = 1.50484, size = 108, normalized size = 1.21 \[ -\frac{9}{125} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + \frac{4}{125} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{63}{3125} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{128}{625} \, \sqrt{-2 \, x + 1} - \frac{11 \, \sqrt{-2 \, x + 1}}{625 \,{\left (5 \, x + 3\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((3*x + 2)^2*(-2*x + 1)^(3/2)/(5*x + 3)^2,x, algorithm="maxima")

[Out]

-9/125*(-2*x + 1)^(5/2) + 4/125*(-2*x + 1)^(3/2) + 63/3125*sqrt(55)*log(-(sqrt(5
5) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 128/625*sqrt(-2*x + 1) -
 11/625*sqrt(-2*x + 1)/(5*x + 3)

_______________________________________________________________________________________

Fricas [A]  time = 0.212885, size = 109, normalized size = 1.22 \[ \frac{\sqrt{5}{\left (63 \, \sqrt{11}{\left (5 \, x + 3\right )} \log \left (\frac{\sqrt{5}{\left (5 \, x - 8\right )} + 5 \, \sqrt{11} \sqrt{-2 \, x + 1}}{5 \, x + 3}\right ) - \sqrt{5}{\left (900 \, x^{3} - 160 \, x^{2} - 935 \, x - 298\right )} \sqrt{-2 \, x + 1}\right )}}{3125 \,{\left (5 \, x + 3\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((3*x + 2)^2*(-2*x + 1)^(3/2)/(5*x + 3)^2,x, algorithm="fricas")

[Out]

1/3125*sqrt(5)*(63*sqrt(11)*(5*x + 3)*log((sqrt(5)*(5*x - 8) + 5*sqrt(11)*sqrt(-
2*x + 1))/(5*x + 3)) - sqrt(5)*(900*x^3 - 160*x^2 - 935*x - 298)*sqrt(-2*x + 1))
/(5*x + 3)

_______________________________________________________________________________________

Sympy [A]  time = 158.772, size = 199, normalized size = 2.24 \[ - \frac{9 \left (- 2 x + 1\right )^{\frac{5}{2}}}{125} + \frac{4 \left (- 2 x + 1\right )^{\frac{3}{2}}}{125} + \frac{128 \sqrt{- 2 x + 1}}{625} - \frac{484 \left (\begin{cases} \frac{\sqrt{55} \left (- \frac{\log{\left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} - 1 \right )}}{4} + \frac{\log{\left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} + 1 \right )}}{4} - \frac{1}{4 \left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} + 1\right )} - \frac{1}{4 \left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} - 1\right )}\right )}{605} & \text{for}\: x \leq \frac{1}{2} \wedge x > - \frac{3}{5} \end{cases}\right )}{625} + \frac{1364 \left (\begin{cases} - \frac{\sqrt{55} \operatorname{acoth}{\left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} \right )}}{55} & \text{for}\: - 2 x + 1 > \frac{11}{5} \\- \frac{\sqrt{55} \operatorname{atanh}{\left (\frac{\sqrt{55} \sqrt{- 2 x + 1}}{11} \right )}}{55} & \text{for}\: - 2 x + 1 < \frac{11}{5} \end{cases}\right )}{625} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((1-2*x)**(3/2)*(2+3*x)**2/(3+5*x)**2,x)

[Out]

-9*(-2*x + 1)**(5/2)/125 + 4*(-2*x + 1)**(3/2)/125 + 128*sqrt(-2*x + 1)/625 - 48
4*Piecewise((sqrt(55)*(-log(sqrt(55)*sqrt(-2*x + 1)/11 - 1)/4 + log(sqrt(55)*sqr
t(-2*x + 1)/11 + 1)/4 - 1/(4*(sqrt(55)*sqrt(-2*x + 1)/11 + 1)) - 1/(4*(sqrt(55)*
sqrt(-2*x + 1)/11 - 1)))/605, (x <= 1/2) & (x > -3/5)))/625 + 1364*Piecewise((-s
qrt(55)*acoth(sqrt(55)*sqrt(-2*x + 1)/11)/55, -2*x + 1 > 11/5), (-sqrt(55)*atanh
(sqrt(55)*sqrt(-2*x + 1)/11)/55, -2*x + 1 < 11/5))/625

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.212435, size = 122, normalized size = 1.37 \[ -\frac{9}{125} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + \frac{4}{125} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{63}{3125} \, \sqrt{55}{\rm ln}\left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{128}{625} \, \sqrt{-2 \, x + 1} - \frac{11 \, \sqrt{-2 \, x + 1}}{625 \,{\left (5 \, x + 3\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((3*x + 2)^2*(-2*x + 1)^(3/2)/(5*x + 3)^2,x, algorithm="giac")

[Out]

-9/125*(2*x - 1)^2*sqrt(-2*x + 1) + 4/125*(-2*x + 1)^(3/2) + 63/3125*sqrt(55)*ln
(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 128/6
25*sqrt(-2*x + 1) - 11/625*sqrt(-2*x + 1)/(5*x + 3)